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I. INTRODUCTION

Kim and Thiele [1] have developed a hybrid AS-MM technique (asymptotic-

moment method technique) to find the induced currents on the surface of

scatterers in the intermediate frequency region. Kaye, Murthy and Thiele [2],

[3] have significantly improved on that work by eliminating the moment method

regions thereby making the method potentially applicable to large scatterers

as well as ones of modest size. In the work of Kaye, Murthy and Thiele, tne

MFIE was reduced to a sequence of integral equations for both the "optics"

currents and the "correction" currents, each of which is solved oy iteration.

On the other hand, in Kim and Thiele [I], the "correction" currents were

solved by the moment method. The present technique, then, is a purely

iterative technique wherein all the integral equations are of the same form

and are similarly solved via iteration. In this report, the iterative method

is improved still further by reducing the amount of computation required as

discussed below.

In this report we present further investigations on the iterative

technique [2]. In [3], the optics currents on the. lit side are computed

assuming that the shadow-side current is zero. Hence, any two scatterers

whose lit-side geometry is the same would have identical "optics" currents on

the lit-side, notwithstanding the fact that the shadow-side geometry is

different. The effect of the shadow-side geometry is taken into account Nnile

computing the correction currents on the lit side. This necessitates tne

computation of higher-order correction currents. Furthermore, there are

situations when the approximation of the shadow-siae current ny zero curren-

is inappropriate. As an example, consider the situation of a square cylincer

V'I V



being illuminated by a plane wave when the angle of incidence is such that one

of the faces in the shaow region is near grazing. The current on that face is

k. quite appreciable and cannot be taken to be zero. We, therefore, modify the

iterative technique by incorporating the effect of shadow-side currents for a

scatterer with either surface discontinuities or a smooth surface. To obtain

these initial currents, we developed closed form expressions for currents on a

'wedge. For smooth bodies, Fock theory [4] furnishes the initial estimates of

the shadow-side current. Thus, we incorporate the edge diffraction theory and

Fock theory into the ansatz for the iterative technique and obtain the hybrid-

iterative technique. We are also able to recast the integral equations for

correction currents in such a way that the technique consists in computing the

optics currents over and again. This effects a considerable simplification of

the computer program. Furthermore, incorporating the initial currents into

the iterative technique removed the necessity of computing the higher order

correction currents. Indeed, frequently the zeroth-order optics currents

themselves are a sufficiently accurate solution.

In Section I, we develop the integral equations and discuss their

solution by iteration. In Section 1I1, we present theory relevant to the

initial estimates of the shadow-side currents for both smooth bodies and eaged

bodies. In Section IV, we deal with some special numerical considerations.

Section V presents extensive computations illustrating the theory aeveloped in

Section [I. Both edged bodies, exemplified by a square cylinder and smooth

bodies exemplified by circular and elliptic cylinders are considered. Sect ion

V contains summary of the technique and points out further avenues of

research.

2
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I1. GENERAL THEORY

A. MAGNETIC FIELD INTEGRAL EQUATION

Consider a perfectly conduct ing body illuminated by a plane wave. The

induced surface current density on the body at an observation point P (see

Fig. 1) can be computed from the MFIE:

I(A) = 2nxA(A) + 2nx L[1] (1)

* , where the operator L is defined by

LCI] - f I(A') x 'G(r) ds' (2)

The surface of the body is denoted by Z and and ' are the observation and

source point position vectors, respectively, on z and r = - ' The prime

on the gradient operator indicates that the differentiation is performed on

the source coordinates. The bar througn the integral sign is used to denote

the principle value integral over Z. is the incident magnetic field vector

and n is the outward unit normal to the surface at A. G(r) is tne free-space

Green's function given by

G(r) ,_e (r

for the three-dimensional problem and by

:Z-

,G.- 
3
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Figure I. Scattering )y a perfectly conaucting body.



for the two-dimensional problem. H(2 )( r) is tne zero-oraer HanKel function

of the second kind and is the free space propagation constant. The time

dependence is taken to be exp(jwt) and is suppressed throughnut.

B. OPTICS CURRENTS

The first step in solving the MFIE for the induced surface current

z
density I(A) is to divide the total surface z of the body into Z and s

which represents the lit and shadowed regions, respectively. The dividing

line between these two regions is the geometrical optics shadow boundary which

is defined as the locus of points satisfying u • n = 0, where u is the unit

0 4vector in the direction of propagation of the incident field. Then ( ) can

be expressed as follows:

where =1 if and 6=O if e E s. Eq. (1) can now be rewritten as:

I(A) 2nx Ai(O) 2nx L ] + 2nx LI s] .6)

In the notation used in Eq. (6) and in subsequent equations, the surface of

integration is identified by the superscript on the current density. We low

write out Eq. (6) explicitly for e Z1 and Z :

2;x Ai~ 2,;x L ] 2;x L[-5*] 7

.25



The problem of solving for the induced surface current density nas now

, been transformed into one of solving Eqs. (7) and (8) for Q. and s. e

compute these currents in sequential fashion in the following way.

First, let b be an estimate of shadow current. For edged oodies like

the square cylinder, this current is obtained from the wedge diffraction

theory. For smooth bodies like circular or elliptic cylinders, this current

is obtained using Fock theory. A detailed discussion of determining s will

be considered in Section III. Thus,

,E ~ (9)

Substituting Eq. (9) in Eq. (7) and noting that the current on tne lit side

would now be an approximation to the true current and denoting this

approximate current by

• :o 2n i i (  +2nx L[o] 2nx L[ ](,)

This 'optics current" is a significant improvement over the classical pnysical

optics (PO) current since it takes into account mutual interaction of crren-

on both lit- and shadow-regions in addition to the geometrical optics ,=,

field.

" *.~ -, A shadow-side optics current", I OP is now defineo :v

substituting " in (3):

u1j() 2nx ;X 2nx 2] - LLo

6



In this expression, the main contribution of the second term on the right-nano

side will be -2nx Ai(A) to cancel the first term. The joS obtained from Eq.op

(11) would be closer to the true current than our initial guess E. Indee,

the only inaccuracy incurred being that through the approximate value taKen

for the lit-side current.

Now that a better approximation to the shadow-side current is available

than is I, a new optics current on the lit side may be obtained. This lit-

side current may be used to further improve the shadow-side current. Thus,

higher-order optics currents may be obtained until the desired accuracy is

achieved. The integral equations for nth order optics currents may be defined

as follows

ZOP n i ] + L OP ,n-1]  (12)

OP ,n = 1 iA Cop, n op [ 0, n](3

n 1, 2 . . .

Io ,ois the solution of Eq. (11).

In the iterative technique described in an earlier report, tne ootics

current of zeroth order were improved upon by the addition of correction

currents. The technique described here is mathematical y equivalent to tne

correction current ansatz of the iterative technique and at tne same time is

much simpler from the programming point of view.

7



A - Thus, the hybrid-iterative technique computes the currents on the lit and

shadow regions in sequential fashion starting with an initial estimate for tne

- shadow current. All the integral equations are of the same form and are, in

fact, Fredholm integral equations of the second kind. Hence, all these

integrals may be solved by iteration as discussed in £2], [3].

7r-
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I I. INITIAL CURRENTS

An initial estimate of the current on a scatterer with surface

discontinuities like a square cylinder is obtained from a knowledge of

currents on a wedge. For a scatterer with smooth surface, Fock theory may oe

used to obtain the initial estimate of the shadow-side current.

A. Shadow-Side Current on a Wedge:

Consider the wedge shown in Figure 2 illuminated by a TE-plane wave.

When the angle of incidence 0i is such that the shadow boundary is not "close"

to face 8, the current on face B is given by [5],

," n -8n "-i00

where,

K (x) fe Im eit dt

9 B  2p B • (cos- + cos !-)/sin
n n

,.'.

: propagation constant

p distance from the edge

n (2 2)

= interior wedge angle.

9
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When the angle of incidence is such that a shadow boundary is close to face B,

the current is given by,

-E "2Ho[B K (BxB) + sgn(cot2*) K (xB )] e- tB

(n - I )w - T iT 4 i ( -l .( 5

where, B (- 1)
4n

X1 : p/2 • 2n cot

.4-. = (T7ri)/2n

Thus, Equations (14) and (15) express the currents on the shadow side of

a wedge in closed form. These expressions involve the well-known modified

Fresnel functions, K_ (x) [6] and are easy to compute. Figure 3 presents

shadow-side currents on wedge computed using the above expressions as 4ell As

the exact solution obtained from the eigenfunction solution. Note tnat tne

agreement is excellent.

These currents on the wedge may readily be used to obtain an initial

estimate of the shadow current on a square cylinder. Consider the geometry 0f

a square cylinder shown in Figure 4. Faces 2 and 3 are in the snadow

region. Faces I and 2 constitute a wedge illuminated with tMe angle of

11
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incidence being iB The current on face 2 may be approximated by the

current on a corresponding wedge with r / /2 and i In a similar

fashion, the current on face 3 also may be approximated.

B. Shadow-Side Current on a Smooth Body:

From Fock's theory [4], the tangential components Htg of the magnetic

field on the surface of a smooth perfectly conducting body are equal to the

tangential components of the external field Hex multiplied by a universal
tg

-.- , function of the reduced distance . Therefore, for TE polarization

Ht- Hex g(W) (1)

tg tg

where 3

. (~ ' .eJ t dt
e" f e (17)

The expression for the Airy function W, and the contour C are given in [4].

For the definition of , and Hex, let us consider the case where the perfectly
tg

conducting body is an infinite circular cylinder of radius 'a' with its axis

oriented in the z direction and a plane wave is incident along the negative y

6. axis with the magnetic field also in the z direction, as snown in Figure 5.

According to Goodrich [7], the distance from the shadow boundary originally

given in Fock's theory has been generalized to the arc length on the surface

of the cylinder from the shadow boundary. Therefore, the magnetic field on

the cylinder surface Hz is given by

I n " 2n,,

H z H 0 = e 2 n I
Hz o° z e n (" ) " (2n'

nio in

15
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where Ho is the magnitude of the incident plane wave and g(Z) is defined trhe

same way as above. a is the propagation constant and ZIn and Z 2n are the arc

-. lengths on the cylinder surface given by

z 1n = a(p1 + 2nir)

" 2n = a ( 2 
+ 2nir) (19)

where

"= 2Tr -,and

02 Tr(20)

as shown in Figure 5 with 0 , < 21 . The reduced distances corresponding to

these path lengths are given by

;%: (.a 1/3

1n : ( + 2nn)

2n ( 1/3 (2 + 2nr) (21)

Since g(-) decreases monotonically away from the shadow boundary, after tne

wave creeps along the cylinder surface more than half of the circle, the field

decays to an insignificant value. Therefore, only the first term of tne

.- series is retained.

Once the field on the surface is found, one can obtain tne Surface

current density through the following relation, namely

be.~xR 22"

17
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where n is the normal to the surface. Therefore, the total Fock current in

the shadow region is given by

I H (e g( 1 ) + g((23)

where

a= (6a1/3 " and
j = 97 (21r and

(1a)1/3
2 Z i) (24)

The computed results of the Fock current for the circular cylinder of

radii equal to 0.2, 1.2 and 3.2 wavelengths are given in Figures 6, 7 and 8,

respectively.

While the expressions given here are specifically valid for the circular

cylinder, Fock theory is valid for all smooth bodies and for both TE and TM

polarizations and may be used to obtain the shadow-side current in-all sucn

cases.

d
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IV. NUMERICAL CONSIDERATIONS

A. Surface Discontinuities

7,- In evaluating the integrals during the iteration process, special

attention has to be paid to surface discontinuities which, if not treated

correctly, give rise to numerical errors. As an example, consider the wedge

shown in Fig. 9. Here the edge of the wedge is the discontinuity. The

current on face A is given by

iA(z) = 2nx Ai(z) + 2nx f 1g(z')x 'G(r)di' . (25)
B

Introducing the Greens function as given in Eq. (4) and carrying out the

A vector products, this becomes:

jA (z) = 2Hi(Z) + f i jB(Z,) HM2 )( r) cos~dx.' . (26)

4'=0

Then, for field points close to the edge (zi.O) and source points close to tne

edge (V'0), the distance r between them tends to zero and the Hankel function

has the following small parameter behavior:

H 2)(3r) - 2 (27)

Under these conditions, the integrand contains an inverse distance fjnct'on

" which gives rise to large error when integrated numerically. However, tnis

integral can be evaluated analytically as follows. From Fig. 9, it can oe

seen that

22
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Figure 9. Geometry and definitions for edge current calculations.
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coso =1 sina (28)

and

r -+ 2.z'cosa . (29)

Hence, for z 0 and '--- 0 , cos 0 so that for field points close to the

edge source points far from the edge do not contribute to the integral in

(28). The upper limit of integration can be replaced by a finite value, and

Eq. (28) can be written with the aid of Eqs. (27) -(29) as follows:

A ( = 2H (0) - j B L.sina L dz' (30)

0 t' + z - 21't cosa

This is a standard integral which yields the following result:

JA (.-0) = 2Hi(0) - JB(z -0) C • (31)
IT

This result is general and holds for the optics and correction currents

alike. Its importance lies in the fact that the edges of polygonal structures

and edge-like protrusions on surfaces do not have to be truncated, as was Cone

in C8], or dealt with using a different approach. Hence, the current at the

edge can be computed without the need for resorting to a hybrid approach.

24



B. CONVEX SURFACES

For surfaces comprised of planar sections, the term 2nx L[] in the MFIE

is identically zero for observation and integration points on the same planar
-4 .

section. This, however, is not true for convex surfaces, in which case the

integrals are singular due to the singular behavior of the Greens function

and, hence, principle value integrals have to be used.

The details of the principle value calculation for the three-dimensional

case are given in [9], with the result that

f I ( ') x ' G(r) ds' x ' G(r) ds' -[4- (32)

. where r' = - , c being the neighborhood of the singularity. a is the

-' absolute value of the solid angle subtended by the deformed surface (in

taking f) at the field point , and has to be determined from the geometry of

the surface. If E is smooth at A, then Q = 2-r.

For the two-dimensional case, it will be shown that the integral in the

MFIE remains finite despite the singularity in the Greens function. Consider,

for example, the case of a cylinder of circular cross section as shown in Fig.

5. For this two-dimensional scattering problem, Eq. (7) is given by:

L[I] t' f K(A,A') J(z')dz' (33)

where

K((n (3r)3d

25
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and t' is the direction of the current at the source point P'. Using Fig. 5,

it can be shown that

= sin ' r (35)

Substituting Eqs. (35) and (37) in (34), we find that

i (36)

and therefore LCJ] will be finite for any two-dimensional scattering problem.

26
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V. NUMERICAL EXAMPLES

In this section, we illustrate the technique described in earlier

sections. We deal with scatterers with surface discontinuities as well as

smooth surfaces. Scatterers with edges are exemplified by a square

cylinder. Scatterers with smooth surfaces are exemplified by circular and

elliptic cylinders. In all cases discussed, the incident wave is a

Transverse-Electric (TE) plane wave. Work on the Transverse-Magnetic (TM)

case is partially done and will be the subject of another report in the near

future.

A. SQUARE CYLINDER

Two examples are presented here. In both cases, the size of the cylinder

is the same, viz., w : 3.7X. However, the angles of incidence, 9i, are

different. The case, = 1150, has been dealt with in an earlier report

[3]. We study the same case here using our hybrid-iterative technique. It

was necessary in [3] to compute four orders of correction currents to obtain a

sufficiently accurate result. With the hybrid iterative technique, zerotn

order optics currents themselves give a sufficiently accurate solution. .4e

also present the first-order optics currents for comparison. Figures i0 to 14

show the results for w = 3.7x and 1= I5.

We also consider the case when i = 950. Note that in this case, Face 2

of the square cylinder is almost, but not quite, in the visible region. As

can be seen from the final result, the current on this is quite appreclaole

27
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-as was done in the

and may not be neglected initially as was done in the iterative tecnnique.

Figures 15-19 show results corresponding to this case. In tnis case it was

necessary to compute up to the second-order optics currents.

B. SCATTERERS WITH SMOOTH SURFACE

i) Circular Cylinder:

In [23, Kaye, Murthy and Thiele used the iterative technique to compute

the surface currents on a circular cylinder of radius 3.2x. These

computations include the first-order correction current and are characterized

by a ripple. For the same cylinder, we computed induced currents using tne

hybrid-iterative technique. These results are presented in Figures 20-22.

S.Note that there is no ripple and that the agreement between our results and

the exact eigenfunction solution is excellent. Furthermore, we needed to

compute only up to the zeroth-order optics currents.

In order to demonstrate that our technique works well for "small" bodies,

we also consider a 0.2X radius circular cylinder. We compute botn

zeroth-order and first-order optics currents. These results are shown in

Figures 23-27. Note the excellent agreement between our results and the exac:

results obtained using the eigenfunction solution.

The computer code we have written is general and may be used to compute

the induced currents on scatterers with an arbitrary cross-section. 7o

demonstrate this generality, we have also considered an elliptic cylinder

(Figure 23) with semi-major and semi-minor axes being 1.5A and 1.O,

respectively. Our results are compared with those of the method of moments

(MM). These results are Shown in Figure 29-31. Note the excellent agreement

between the results obtained from the MM and hybril-iterative tecnnique.
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VI. CONCLUDING REMARKS

In this report, we present a new technique, the hyorid-iterative

technique, to compute the induced currents on an arbitrary, perfectly-

conducting scatterer. This technique is obtained by incorporating the edge

diffraction theory and Fock theory into the ansatz of the iterative technique

eor solving the magnetic field integral equation developed earlier L2].

Furthermore, the iterative scheme has been modified by computing higher-order

"optics currents" instead of correction currents. We list the following

advantages.

i) Incorporating the edge diffraction theory and Fock theory eliminates the

need for computing higher-order correction currents. That is, speed of

convergence is improved. Frequently, zeroth order optics currents themselves

furnish sufficiently accurate solutions. CPU time requirements are,

therefore, less demanding.

ii) In the iterative technqiue, the shadow-side current is initially taken to

be zero. This is inappropriate in some situations. This restriction is

removed in this hybrid method. Hence, a wider class of problems may now be

solved.

iii) Modifications in the iterative scheme introduced by replacing tne

evaluation of the correction currents by the evaluation of higher-order optics

currents simplifies the computer code. As a result, savings in CPU time are

effected.

It had already been established that our technique does not give spurious

currents for frequencies corresponding to interior resonances of e

scatterer. Furthermore, as the size of the body is increased our tecnnique is
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computationally more efficient than method of moments. As an example, our

technique requires only one-third to one-quarter the CPU time required by tne

MM to compute the currents on a 3.7X square cylinder. For larger scatterers,

the advantage in CPU time is increasingly higher.

Even though the technique has been demonstrated only for 2-0, perfectly-

conducting scatterers, it may be extended to more complicated structures like

coated scatterers and 3-0 bodies.
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